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STOCHASTIC SELF-OSCILLATIONS IN THE PRESENCE OF DRY FRICTION 

L. Ya. Kashchenevskii UDC 531.43 

We propose and investigate a mathematical model of a one-dimensional mechanical 
system which executes stochastic self-oscillations for certain values of the 
parameters. 

Many mechanical systems involve the relative motion of bodies in the presence of dry 
friction. It is known [i, 2] that self-oscillations are possible in such systems, and a 
number of papers have been devoted to their study. There are two characteristics of the 
laws of dry friction, either of which can lead to the initiation of self-oscillations in 
an elastic system. The first is the decrease of the frictional force with increasing rela- 
tive velocity [3], and the second is the increase of the static frictional force with an in- 
crease in the time of stationary contact [4, 5]. 

In the present article we propose a simple model of a mechanical system in which 
stochastic self-oscillations occur for certain values of the parameters. 

We consider a body moving on a plane under the action of a spring of stiffness c whose 
end is displaced with a constant velocity v. We assume that the force of sliding friction 
has the constant value FQ, and that the maximum force of static friction F(T) depends on the 
time �9 of stationary contact between the body and the plane in the following way: F (O) = 
Fo, and F(T) increases monotonically with increasing T and approaches a finite value F~ as 

The behavior of such a system was investigated in [4, 5] for 

F (~) =:  F1 - -  ( F I  - - -  Fo) e - 6 ~  , ( 1 )  

but the parameters FI, Fo, and 6 were assumed variable over rather narrow limits. We show 
below that the whole (F~, 6) plane is divided into a number of nonintersecting domains, one 
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Motion of representative point as a function of the 
~oordinate of the p~int of separation: I) x n < --5; II) --5 < 
x n < --3; III) --3 < x n < --i. 

Fig. 2. Possible types of mapping function�9 I) for k < 0.5; 
II) for fx > 3, 0.5 < k < (fx -- l)/(fl + I) corresponds to 
stochastic self-oscillations; III) for 0.5 < k < i; k > (fx -- 
l)/(fl + l); IV) for k > I. 

of which corresponds to the values of the parameters for which stochastic self-oscillations 
are initiated. 

The equation of motion of the body has the form 

"~= ~R (~-c(x . . . . .  vt), (2) 

where for ~ > 0 FFR (~) = --Fo, for ~ < 0 FFR (~) = Fo, and for ~ : 0 the frictional force 
is equal to the spring tension, as long as the tension does not exceed the maximum force 
of static friction F(T). 

Transforming to dimensionless variables by theformulas 

~; t = | / m ~  F = , ,  G 
c v c  ~ (3) x - -  v t  = 

we reduce Eq. (2) to the form 

i + x  = SR (x+ v). (4) 

We investigate the phase trajectories of Eq. (4) in the (x, ~) plane (Fig. i). 

For x > --~ the force fFR (x + v) = --i, and consequently the phase trajectory will be 

an arc of a circle with its center at the point (--l, 0). For x <--~, when fFR (x + ~) = i, 
the phase trajectory will be an arc of a circle with its center at the point (i,.0). If the 
representative point falls on the segment L (it is determined by the conditions ~ =--~ and 
IX| < 1), it "sticks" to it, since on this segment the force of sliding friction exceeds the 
spring force which causes the motion, and the body is at rest with respect to the plane, but 

moves with a velocity x =--~ relative to the end of the spring�9 The coordinate xl at which 

tile representative point separates from the straight line ~ =-~ and begins to move in a 
circle depends on the maximum force of static friction, which in turn is determined by the 
time of stationary contact, i.e., the time the representative point moves along the straight 

line x :--~�9 Clearly we have for 

Thus, for xl we obtain the equation 

~ =  xo--x, 
(5) 

(6) 
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from which ~x is determined as a function of xo: 

~ = ~ (~). (7) 

We proceed to the construction of the map of the track for the coordinates ~n of the 

Separation of the representative point from the straight line ~ - x =--v. If x n < --5, the phase 

trajectory intersects the straight line x =--~ at the point ~n+* = Xn + 4, and leaves the 
segment L. _For --5 < x n < --3 the representative point falls on the segment L at the ~oordi- 
nate x n' = x n + 4, in terms of which Xn+1 is expressed in accord with (7). If --3 < Xn < --i, 
the phase trajectory intersects the segment L at the point x n' = --x n --2, and then x n' goes 
over to Xn+~ in accord with (7)�9 

Thus, we obtain the following map of the track 

[ ~ + 4 ~  ~<-5;  

l 

The map of the track is an exceptionally convenient method for studying the phase-plane 
diagram of a system; it gives an adequate description of the nature of the motion and its 
classification. The mapping of the track by piecewise-linear and quadratic functions is 
described in detail in [6]. Even in the relatively simple case of a quadratic function, a 
dynamic system with such a mapping function admits, in addition to a simple oscillatory pro- 
cess and random self-oscillations, a whole series of intermediate motions which are a 
sequence of cycles. Each cycle consists in turn of a sequence of oscillations with various 
amplitudes and periods, the number of which may be arbitrarily large, depending on the 
specific values of the parameters�9 Therefore, it is expedient to replace the original rela- 
tion for F(~) described by Eq. (i) by a piecewise-linear function in qualitative agreement 
with (I). With such a simplification a number of intermediate admissible motions drop out 
of consideration, but the basic bifurcations on the path from harmonic to random oscilla- 
tions remain. Thus, we take F(T) as follows: 

l Fo + a~ ~r ~ F1-- F o ; 
a 

F(x)= F1 ~r x / ~ F - - F o  (9) 
a 

Then the function ~n) takes the form 

1+k~r kk~ < fi--1 k<1, 

:i--I (I0) 
[ ~ ------=-_, k < l ,  

where k = a/vc is a dimensionless parameter equal to the rate at which the function 
f((~o -- x,)/~) increases with increasing Xo from --i to i. If k > i, the function @(~) 
reaches a maximum value f, by a jump at any x from the interval IX] < I. 

Figure 2 shows graphs of the mapping function for certain f~ and k, where for con- 
venience we have made the change of variables ~ = --~, since thecoordinates xnof the point 
of separation take on only negative values: ~n < --I. Under the condition f~ > 3, 0.5 < k < 
i, and k < (f~ -- l)/(f~ + i), the mapping function has the form II (Fig. 2), which corre- 
sponds to stochastic self-oscillations [6, 7]. 

Figure 3 shows the division of the (f~, k) plane into nonintersecting domains which 
describe the bifurcations of the system under study. 

If the parameters f~ and k belong to domain i, the point ~ = i is stable (Fig. 2), and 
the system executes harmonic oscillations of a definite character: when the amplitude in- 
creases by chance, it again decreases to the initial value in the course of time; if the 
amplitude decreases by chance, it remains without change until the next chance action. 

If the parameters fx and k belong to domain 2, the stable form of motion will be re- 
laxation oscillations with constant amplitude and frequency. 

858 



k 

m 

I 

~ f  

! 

7 

3 

J 

4 

" 2 

0 

-2 

-4  

-8 
0 3 5 /I 0 /0 2O 3o co 

Fig. 3 ~ Fig. 4 

Fig. 3. Division of the plane of the parameters into domains: i) harmonic 
self-oscillations; 2) relaxation self-oscillations; 3) parameters for which the 
system executes a sequence of relaxation self-oscillations; 4) stochastic self- 
oscillations. 

Fig. 4. Time dependence of coordinate of body during stochastic self-oscilla- 
tions (f~ = 7, k = 0.7). Curves i and 2 are for different initial coordinates, 
x, but the same initial derivatives ~. 

When the parameters belong to domain 3, the motion of the system breaks up into a 
sequence of identical cycles, each of which in turn consists of a finite sequence of oscil- 
lations with various amplitudes and frequencies. 

Finally, domain 4 corresponds to random self-oscillations. In other words, the ampli- 
tude and frequency of the self-oscillations vary in a random manner within limits fixed by 
the values of the parameters f, and k. 

Figure 4 shows two curves for x(t) for the same initial velocities, but slightly dif- 
ferent initial coordinates. It is clear from the figure that as t increases, the curves di- 
verge in spite of nearly the same initial values. 

NOTATION 

c, spring stiffness; Fo, force of sliding friction; FI, maximum force of static fric- 
tion; f~ = F~/Fo, dimensionless force; FFR(~), force of friction as a function of velocity; 
m, mass of body; t, time; ~, dimensionless time; x, coordinate of body; x, dimensionless 
coordinate of body; v, velocity of end of spring; ~ = vFo/m/~, dimensionless velocity of 
end of spring; T, time of stationary contact between body and plane; T, dimensionless time 
of stationary contact between body and plane. 
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